If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2-7p-5=0
a = 6; b = -7; c = -5;
Δ = b2-4ac
Δ = -72-4·6·(-5)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-13}{2*6}=\frac{-6}{12} =-1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+13}{2*6}=\frac{20}{12} =1+2/3 $
| 10x-20/5=x-3 | | -5(3+3n)=-135 | | 90-45a=1 | | -5(3+3n)=135 | | 7x+2=-18-3x | | -16t+5t=11 | | x-2+5x=4 | | 14n-5n=18 | | x+8+5x=44 | | y=22(1.03)^8 | | 3x+10+3x=64 | | 6-33x=-1 | | 3x/7=-12+2 | | 5x+x=2x+6+x | | 64^x=4^(-1/7) | | 9r+3=15r+6 | | -3=4/5z | | 45+83.3x=50 | | -10+x-2x=-1 | | -25+-15x+8x=-2x+10 | | 5n-30=85 | | -25+(-15x)+8×=2x+10 | | -10(b+37)=30 | | -285=-5(1-8x) | | 10j+8=78 | | -51=2x+4x-9 | | 1)-285=5(1-8x) | | -25+(13x)+8x=2x+10 | | 10x^2+18x(5/x^2)=0 | | 3=r+4 | | (b/4)-(b/12)-(2/3)=0 | | -5(5+3x)+8x=-2×+10 |